Consistent Nonlocking Reads

A consistent read means that InnoDB uses multi-versioning to present to a query a snapshot of the database at a point in time. The query sees the changes made by transactions that committed before that point of time, and no changes made by later or uncommitted transactions. The exception to this rule is that the query sees the changes made by earlier statements within the same transaction. This exception causes the following anomaly: If you update some rows in a table, a SELECT sees the latest version of the updated rows, but it might also see older versions of any rows. If other sessions simultaneously update the same table, the anomaly means that you might see the table in a state that never existed in the database.

If the transaction isolation level is REPEATABLE READ (the default level), all consistent reads within the same transaction read the snapshot established by the first such read in that transaction. You can get a fresher snapshot for your queries by committing the current transaction and after that issuing new queries.

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its own fresh snapshot.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED and REPEATABLE READ isolation levels. A consistent read does not set any locks on the tables it accesses, and therefore other sessions are free to modify those tables at the same time a consistent read is being performed on the table.

Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a consistent read (that is, an ordinary SELECT statement), InnoDB gives your transaction a timepoint according to which your query sees the database. If another transaction deletes a row and commits after your timepoint was assigned, you do not see the row as having been deleted. Inserts and updates are treated similarly.

You can advance your timepoint by committing your transaction and then doing another SELECT.

This is called multi-versioned concurrency control.

In the following example, session A sees the row inserted by B only when B has committed the insert and A has committed as well, so that the timepoint is advanced past the commit of B.

             Session A              Session B

           SET autocommit=0;      SET autocommit=0;
|          SELECT * FROM t;
|          empty set
|                                 INSERT INTO t VALUES (1, 2);
v          SELECT * FROM t;
           empty set

           SELECT * FROM t;
           empty set


           SELECT * FROM t;
           |    1    |    2    |
           1 row in set

If you want to see the “freshest” state of the database, use either the READ COMMITTED isolation level or a locking read:


With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its own fresh snapshot. With LOCK IN SHARE MODE, a locking read occurs instead: A SELECT blocks until the transaction containing the freshest rows ends (see Section, “SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE Locking Reads”).

Consistent read does not work over certain DDL statements:

  • Consistent read does not work over DROP TABLE, because MySQL cannot use a table that has been dropped and InnoDB destroys the table.

  • Consistent read does not work over ALTER TABLE, because that statement makes a temporary copy of the original table and deletes the original table when the temporary copy is built. When you reissue a consistent read within a transaction, rows in the new table are not visible because those rows did not exist when the transaction's snapshot was taken.

InnoDB uses a consistent read for select in clauses like INSERT INTO ... SELECT, UPDATE ... (SELECT), and CREATE TABLE ... SELECT that do not specify FOR UPDATE or LOCK IN SHARE MODE if the innodb_locks_unsafe_for_binlog option is set and the isolation level of the transaction is not set to SERIALIZABLE. Thus, no locks are set on rows read from the selected table. Otherwise, InnoDB uses stronger locks and the SELECT part acts like READ COMMITTED, where each consistent read, even within the same transaction, sets and reads its own fresh snapshot.

Copyright © 2010-2023 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout