13.6.9.6. Locks Set by Different SQL Statements in InnoDB

A locking read, an UPDATE, or a DELETE generally set record locks on every index record that is scanned in the processing of the SQL statement. It does not matter whether there are WHERE conditions in the statement that would exclude the row. InnoDB does not remember the exact WHERE condition, but only knows which index ranges were scanned. The locks are normally next-key locks that also block inserts into the “gap” immediately before the record. However, gap locking can be disabled explicitly, which causes next-key locking not to be used. For more information, see Section 13.6.9.4, “InnoDB Record, Gap, and Next-Key Locks”. The transaction isolation level also can affect which locks are set; see Section 12.3.6, “SET TRANSACTION Syntax”.

If a secondary index is used in a search and index record locks to be set are exclusive, InnoDB also retrieves the corresponding clustered index records and sets locks on them.

Differences between shared and exclusive locks are described in Section 13.6.9.1, “InnoDB Lock Modes”.

If you have no indexes suitable for your statement and MySQL must scan the entire table to process the statement, every row of the table becomes locked, which in turn blocks all inserts by other users to the table. It is important to create good indexes so that your queries do not unnecessarily scan many rows.

For SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE, locks are acquired for scanned rows, and expected to be released for rows that do not qualify for inclusion in the result set (for example, if they do not meet the criteria given in the WHERE clause). However, in some cases, rows might not be unlocked immediately because the relationship between a result row and its original source is lost during query execution. For example, in a UNION, scanned (and locked) rows from a table might be inserted into a temporary table before evaluation whether they qualify for the result set. In this circumstance, the relationship of the rows in the temporary table to the rows in the original table is lost and the latter rows are not unlocked until the end of query execution.

InnoDB sets specific types of locks as follows.

  • SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no locks unless the transaction isolation level is set to SERIALIZABLE. For SERIALIZABLE level, the search sets shared next-key locks on the index records it encounters.

  • SELECT ... FROM ... LOCK IN SHARE MODE sets shared next-key locks on all index records the search encounters.

  • For index records the search encounters, SELECT ... FROM ... FOR UPDATE blocks other sessions from doing SELECT ... FROM ... LOCK IN SHARE MODE or from reading in certain transaction isolation levels. Consistent reads will ignore any locks set on the records that exist in the read view.

  • UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search encounters.

  • DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search encounters.

  • INSERT sets an exclusive lock on the inserted row. This lock is an index-record lock, not a next-key lock (that is, there is no gap lock) and does not prevent other sessions from inserting into the gap before the inserted row.

    Prior to inserting the row, a type of gap lock called an insertion intention gap lock is set. This lock signals the intent to insert in such a way that multiple transactions inserting into the same index gap need not wait for each other if they are not inserting at the same position within the gap. Suppose that there are index records with values of 4 and 7. Separate transactions that attempt to insert values of 5 and 6 each lock the gap between 4 and 7 with insert intention locks prior to obtaining the exclusive lock on the inserted row, but do not block each other because the rows are nonconflicting.

    If a duplicate-key error occurs, a shared lock on the duplicate index record is set. This use of a shared lock can result in deadlock should there be multiple sessions trying to insert the same row if another session already has an exclusive lock. This can occur if another session deletes the row. Suppose that an InnoDB table t1 has the following structure:

    CREATE TABLE t1 (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;
    

    Now suppose that three sessions perform the following operations in order:

    Session 1:

    START TRANSACTION;
    INSERT INTO t1 VALUES(1);
    

    Session 2:

    START TRANSACTION;
    INSERT INTO t1 VALUES(1);
    

    Session 3:

    START TRANSACTION;
    INSERT INTO t1 VALUES(1);
    

    Session 1:

    ROLLBACK;
    

    The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions 2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When session 1 rolls back, it releases its exclusive lock on the row and the queued shared lock requests for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an exclusive lock for the row because of the shared lock held by the other.

    A similar situation occurs if the table already contains a row with key value 1 and three sessions perform the following operations in order:

    Session 1:

    START TRANSACTION;
    DELETE FROM t1 WHERE i = 1;
    

    Session 2:

    START TRANSACTION;
    INSERT INTO t1 VALUES(1);
    

    Session 3:

    START TRANSACTION;
    INSERT INTO t1 VALUES(1);
    

    Session 1:

    COMMIT;
    

    The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions 2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When session 1 commits, it releases its exclusive lock on the row and the queued shared lock requests for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an exclusive lock for the row because of the shared lock held by the other.

  • INSERT ... ON DUPLICATE KEY UPDATE differs from a simple INSERT in that an exclusive next-key lock rather than a shared lock is placed on the row to be updated when a duplicate-key error occurs.

  • REPLACE is done like an INSERT if there is no collision on a unique key. Otherwise, an exclusive next-key lock is placed on the row to be replaced.

  • INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive index record without a gap lock on each row inserted into T. If the transaction isolation level is READ COMMITTED or innodb_locks_unsafe_for_binlog is enabled, and the transaction isolation level is not SERIALIZABLE, InnoDB does the search on S as a consistent read (no locks). Otherwise, InnoDB sets shared next-key locks on rows from S. InnoDB has to set locks in the latter case: In roll-forward recovery from a backup, every SQL statement must be executed in exactly the same way it was done originally.

    CREATE TABLE ... SELECT ... performs the SELECT with shared next-key locks or as a consistent read, as for INSERT ... SELECT.

    For REPLACE INTO T SELECT ... FROM S WHERE ..., InnoDB sets shared next-key locks on rows from S.

  • While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an exclusive lock on the end of the index associated with the AUTO_INCREMENT column. In accessing the auto-increment counter, InnoDB uses a specific AUTO-INC table lock mode where the lock lasts only to the end of the current SQL statement, not to the end of the entire transaction. Other sessions cannot insert into the table while the AUTO-INC table lock is held; see Section 13.6.9, “The InnoDB Transaction Model and Locking”.

    InnoDB fetches the value of a previously initialized AUTO_INCREMENT column without setting any locks.

  • If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires the constraint condition to be checked sets shared record-level locks on the records that it looks at to check the constraint. InnoDB also sets these locks in the case where the constraint fails.

  • LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that sets these locks. InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit = 0, and the MySQL layer above InnoDB knows about row-level locks.

    Otherwise, InnoDB's automatic deadlock detection cannot detect deadlocks where such table locks are involved. Also, because in this case the higher MySQL layer does not know about row-level locks, it is possible to get a table lock on a table where another session currently has row-level locks. However, this does not endanger transaction integrity, as discussed in Section 13.6.9.8, “Deadlock Detection and Rollback”. See also Section 13.6.15, “Limits on InnoDB Tables”.

Copyright © 2010-2025 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout