7.9.3. The MySQL Query Cache

The query cache stores the text of a SELECT statement together with the corresponding result that was sent to the client. If an identical statement is received later, the server retrieves the results from the query cache rather than parsing and executing the statement again. The query cache is shared among sessions, so a result set generated by one client can be sent in response to the same query issued by another client.

The query cache can be useful in an environment where you have tables that do not change very often and for which the server receives many identical queries. This is a typical situation for many Web servers that generate many dynamic pages based on database content. For example, when an order form queries a table to display the lists of all US states or all countries in the world, those values can be retrieved from the query cache. Although the values would probably be retrieved from memory in any case (from the InnoDB buffer pool or MyISAM key cache), using the query cache avoids the overhead of processing the query, deciding whether to use a table scan, and locating the data block for each row.

The query cache always contains current and reliable data. Any insert, update, delete, or other modification to a table causes any relevant entries in the query cache to be flushed.

Note

The query cache does not work in an environment where you have multiple mysqld servers updating the same MyISAM tables.

The query cache is used for prepared statements under the conditions described in Section 7.9.3.1, “How the Query Cache Operates”.

Some performance data for the query cache follows. These results were generated by running the MySQL benchmark suite on a Linux Alpha 2×500MHz system with 2GB RAM and a 64MB query cache.

  • If all the queries you are performing are simple (such as selecting a row from a table with one row), but still differ so that the queries cannot be cached, the overhead for having the query cache active is 13%. This could be regarded as the worst case scenario. In real life, queries tend to be much more complicated, so the overhead normally is significantly lower.

  • Searches for a single row in a single-row table are 238% faster with the query cache than without it. This can be regarded as close to the minimum speedup to be expected for a query that is cached.

To disable the query cache at server startup, set the query_cache_size system variable to 0. By disabling the query cache code, there is no noticeable overhead.

The query cache offers the potential for substantial performance improvement, but do not assume that it will do so under all circumstances. With some query cache configurations or server workloads, you might actually see a performance decrease:

  • Be cautious about sizing the query cache excessively large, which increases the overhead required to maintain the cache, possibly beyond the benefit of enabling it. Sizes in tens of megabytes are usually beneficial. Sizes in the hundreds of megabytes might not be.

  • Server workload has a significant effect on query cache efficiency. A query mix consisting almost entirely of a fixed set of SELECT statements is much more likely to benefit from enabling the cache than a mix in which frequent INSERT statements cause continual invalidation of results in the cache. In some cases, a workaround is to use the SQL_NO_CACHE option to prevent results from even entering the cache for SELECT statements that use frequently modified tables. (See Section 7.9.3.2, “Query Cache SELECT Options”.)

To verify that enabling the query cache is beneficial, test the operation of your MySQL server with the cache enabled and disabled. Then retest periodically because query cache efficiency may change as server workload changes.

Copyright © 2010-2024 Platon Technologies, s.r.o.           Home | Man pages | tLDP | Documents | Utilities | About
Design by styleshout