This section discusses optimizations that can be made for
processing WHERE
clauses. The examples use
SELECT
statements, but the same
optimizations apply for WHERE
clauses in
DELETE
and
UPDATE
statements.
Some examples of queries that are very fast:
SELECT COUNT(*) FROMtbl_name
; SELECT MIN(key_part1
),MAX(key_part1
) FROMtbl_name
; SELECT MAX(key_part2
) FROMtbl_name
WHEREkey_part1
=constant
; SELECT ... FROMtbl_name
ORDER BYkey_part1
,key_part2
,... LIMIT 10; SELECT ... FROMtbl_name
ORDER BYkey_part1
DESC,key_part2
DESC, ... LIMIT 10;
MySQL resolves the following queries using only the entries from a secondary index, if the indexed columns are numeric:
SELECTkey_part1
,key_part2
FROMtbl_name
WHEREkey_part1
=val
; SELECT COUNT(*) FROMtbl_name
WHEREkey_part1
=val1
ANDkey_part2
=val2
; SELECTkey_part2
FROMtbl_name
GROUP BYkey_part1
;
The following queries use the index data to retrieve the rows in sorted order without a separate sorting pass:
SELECT ... FROMtbl_name
ORDER BYkey_part1
,key_part2
,... ; SELECT ... FROMtbl_name
ORDER BYkey_part1
DESC,key_part2
DESC, ... ;
You might be tempted to rewrite your queries to make arithmetic operations faster, while sacrificing readability. Because MySQL does similar optimizations automatically, you can often avoid this work, and leave the query in a more understandable and maintainable form. Some of the optimizations performed by MySQL follow:
Because work on the MySQL optimizer is ongoing, not all of the optimizations that MySQL performs are documented here.
Removal of unnecessary parentheses:
((a AND b) AND c OR (((a AND b) AND (c AND d)))) -> (a AND b AND c) OR (a AND b AND c AND d)
Constant folding:
(a<b AND b=c) AND a=5 -> b>5 AND b=c AND a=5
Constant condition removal (needed because of constant folding):
(B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6) -> B=5 OR B=6
Constant expressions used by indexes are evaluated only once.
COUNT(*)
on a single table without aWHERE
is retrieved directly from the table information forMyISAM
andMEMORY
tables. This is also done for anyNOT NULL
expression when used with only one table.Early detection of invalid constant expressions. MySQL quickly detects that some
SELECT
statements are impossible and returns no rows.HAVING
is merged withWHERE
if you do not useGROUP BY
or aggregate functions (COUNT()
,MIN()
, and so on).For each table in a join, a simpler
WHERE
is constructed to get a fastWHERE
evaluation for the table and also to skip rows as soon as possible.All constant tables are read first before any other tables in the query. A constant table is any of the following:
An empty table or a table with one row.
A table that is used with a
WHERE
clause on aPRIMARY KEY
or aUNIQUE
index, where all index parts are compared to constant expressions and are defined asNOT NULL
.
All of the following tables are used as constant tables:
SELECT * FROM t WHERE
primary_key
=1; SELECT * FROM t1,t2 WHERE t1.primary_key
=1 AND t2.primary_key
=t1.id;The best join combination for joining the tables is found by trying all possibilities. If all columns in
ORDER BY
andGROUP BY
clauses come from the same table, that table is preferred first when joining.If there is an
ORDER BY
clause and a differentGROUP BY
clause, or if theORDER BY
orGROUP BY
contains columns from tables other than the first table in the join queue, a temporary table is created.If you use the
SQL_SMALL_RESULT
option, MySQL uses an in-memory temporary table.Each table index is queried, and the best index is used unless the optimizer believes that it is more efficient to use a table scan. At one time, a scan was used based on whether the best index spanned more than 30% of the table, but a fixed percentage no longer determines the choice between using an index or a scan. The optimizer now is more complex and bases its estimate on additional factors such as table size, number of rows, and I/O block size.
MySQL can sometimes produce query results using data from the index, without consulting the table data. If all columns used from the index are numeric, only the index data is used to resolve the query.
Before each row is output, those that do not match the
HAVING
clause are skipped.